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ABSTRACT

The objective of this report is to present the effect
of a tuned damper on a single degree-of-freedom system
which is subjected to white noise excitation. The tuned
damper itself consists of a mass connected to a visco-
elastic link which, in turn, is connected to the primary
system under consideration. The criterion used for tuning
the damper is the minimization of the mean square response
of the primary system. The tuned damper obtained by use
of this criterion is compared to that obtained from another
criterion requiring the peaks of the absolute value of the
frequency response function to be of equal height.

This abstract is subject to special export controls and each
transmittal to foreign governments or foreign nationals may be
made only with prior approval of the Metals and Ceramics
Division (MAM), Air Force Materials Laboratory, Wright-Patterson
Air Force Base, Ohio 45433.
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1. INTRODUCTION

Reduction of the amplitude of a vibrating system through
the use of various damping devices has received extensive
study (see References 1, 4, 7, 8, and 9). A method of damping
that is presently receiving some attention is that of using
viscoelastic damper units (see References 3, 4, 5, and 10).
This unit consists of a mass attached to a viscoelastic link
which is, in turn, attached to the primary system under con-
sideration.

Consider a primary system consisting of a spring with a

spring rate kl which suspends a mass m, as shown in Figure 1.

i ¢

If a viscoelastic damper unit, idealized as a small mass

connected to a spring with a complex modulus, is attached to

the primary system, the absolute value of the frequency

response function exhibits two peaks. The frequency response

function is the complex ratio of the steady-state response

of the system to a sinusoidal input and is a function of the

excitation frequency. It has been suggested (see References 10,

11) that an optimum damper would damp the motion of the

primary system such that the two peaks of the absolute value

of the frequency response function would be of equal height.
This report outlines an investigation into another

possible criterion for optimization of viscoelastic dampers.

The same primary spring-mass system, to which is attached a

viscoelastic damper unit, is considered. The system is

excited by a special type of random excitation, a white noise.

The criterion that is proposed for optimization of this system



is that the mean square value of the weakly stationary random
response be a minimum. Although a white noise is considered,
the results are applicable to any excitation which exhibits a
broad band flat spectral density over a range of frequencies
of practical interest. See Reference 12,

The method of residues for complex variables is employed
in determining the mean square value of the weakly stationary
response. Numerical results are presented for various combi-
nations of the parameters involved and are compared with those
corresponding to the criterion of equal peaks for the absolute
value of the frequency response function. The numerical

computations were carried out on a high speed computer.



2. ANALYSIS

As is stated in the introduction, the criterion that is
proposed for optimization of the viscoelastic damper unit is
to obtain a minimum mean square value of the weakly stationary
response when the system is excited by a white noise. When
this condition is satisfied, the damper unit will be referred
to as tuned. Since the input is random, the response is also
random. The springs and masses making up the primary system
and the damper unit are considered to be deterministic.

If the system is excited by a weakly stationary random
excitation, such as a white noise, the response of the system
also becomes weakly stationary after a sufficient amount of
time has passed so that the fransient motion has died out.

In this manner, the weakly stationary response is analogous
to the steady state response in deterministic vibration theory.
It may be called the steady state in the probabilistic sense.
The time required for this condition to occur is dependent
upon the amount of damping in the system. The greater the
damping, the sooner the response becomes weakly stationary.

Two cases involving random excitation are considered.
Figure 1 corresponds to the case of random excitation applied
at mass my of the system. Figure 2 corresponds to the case
where the foundation is moved in a random fashion. The tuned
dampers corresponding to these cases are compared to the
tuned dampers corresponding to the criterion for equal peaks
of the absolute value of the respective frequency response

functions.



When the ranrdom i1nput is weakly stationary, the autocor-
relation function of the input is a function of the difference

in the parametric values
E[F(Tl)F(tz)]=RFF(tl- ’Cz) (1)

The autocorrelation function can be expressed as the fourier

transform of the spectral density; that 1s

Rpp( Ty = To) = [‘i’ FR(w) e (T = To) g (2

In order to compute the correlation function of the
response, use 1s made of the following relationship between

the random i1nput and the random output

t t
1 2
E[X(t)X(ty)] = d T, d T, E[F(T)F(T,)] (3)
= 0 h(t; - T h(ty, = Ty)

It has been assumed that X(t) = X(t) = 0 at t = 0 with prob-
ability one. Substituting Equations (1) and (2) into (3)

the correlation function of the response can be written
t t

1 2 il

‘ ° = (4)
w(z, -Tt.) - X
e 1 2°n(t, -‘C‘l)h(tz -’Cz)

Integrating first onT, and T,°

E[X(tl)X(tz)] = f@FF(w)% (w,tl)j'c‘lw,tz}
) (5)

eawftl ~ t2) dS



where the following notation has been used:
t

e (w,t) = f hwe " ‘Y gqu (6)

o

The interchange of the order of integration in Equation (4)
is permissible provided that the function :H: (Ww,t) is
uniformly bounded in w5 . This condition is always satisfied
for systems with positive damping. It may be noted that the
lower limit of the integral in Equation (6) can be extended
to —oe , since h(u) vanishes for negative u. Furthermore,

if the upper limit t tends to infinity, then the right hand
side of Equation (6) becomes the frequency response function,

that is:
26 (wW,oe ) = H(W)

Since only the mean square value of X(t) in the weakly
stationary state will be considered, we let t1 = t2 = t and

let t tend to infinity in Equation (5). We obtain:

o
E[x%(t)] = [ln(w)l 2@ pp(w) dw (D
-oe

Equation (7) describes the relationship between the weakly
stationary mean square response of the system, the spectral
density of the random input, and the absolute value squared
of the frequency response function. The absolute value
squared of the frequency response function prescribes the
fraction of energy to be transmitted through the system at

various frequencies.



Integration of Equation (7) can be performed if the
spectral density of the excitation is known. The random
excitation considered in this report is white noise excitation.
For this excitation, the spectral density is a constant. The
physical interpretation of a constant spectral density is
that the energy content in the random forcing function is
uniformly distributed over the entire frequency domain.

Since this corresponds to an infinite mean energy, a white
noise is physically impossible. However, if the absolute
value of the frequency response function is sharply peaked
near the natural frequencies of the system, and the actual
input spectral density varies slowly in the neighborhood of
the peaks, then the excitation can be treated as white noise
while computing the second order properties of the response.
The white noise excitation is then physically meaningful in
the sense of being a good approximation to an actual spectral
density for such computations.

Since the spectral density for a white noise is a con-
stant, K, the expression for the mean square value of the

weakly stationary response can be written:
(-]

Ex*(0)] =k | |a)| 2 dew (8)

-oo
The viscoelastic element in the damper unit is represented

by a spring with a complex valued stiffness,



k2(1-+i?1 ), where q-is referred to as the loss factor. For
the system shown in Figure 1, it can be shown that:
[w (1+in) - w?] .

m, [w‘. Whw(1+M)-wiws w?wi]ﬁ.m, Euﬁw'qﬁl-!-ﬂ)*r nwiwi ]
(9)

()| 2 =

[k (1= i) = wor]
m[w Wi w* (14M)-whid + Wit - im, Ewiw‘*L(HM)*- *1w]‘w§ ]

where:

k k m
(.02:_2-(..)2:—1; Mo = (10)
m 1 m m

This frequency response function refers to the displacement
of mass m, - It is the response of this mass that is of
primary importance since this mass represents the physical
structure.
Equation (8) can be evaluated by the method of residues.

The integrand, which is a function of the real variable W ,
can be treated as a function of a complex variable A

Since the method of residues is employed, the poles of the
right hand side of Equation (9) must be located. Consider

the following portion of the integrand (where () has been

replaced by A ):

Wi (1+in) - N —
m, [A‘-w{/\"(lq-m) Wi N+ W w}.}- lm,['-w:/\'il(HM)-&- v,_w.‘m: ]

To locate the poles, the denominator is set equal to zero:

2

4 2. .9
A=A [w2(1+m)+ w3

+iwlw§(1+m)] +wfw§(1+£-rt ) =0 (12)



Solving for A - :

A2 = SrwZasm + P+ t'vlwg(lﬂd)]
(13)

B o

, | 1/2
%{[wg(lm) +wf + nlwg(lm)]z - 4L«J§w§(1+uz)]

This expression can be rewritten as follows:

2 2
)\2 _ sz + wl i ‘_IDl COB (9)
2 2 2
; (14)
¢ 2y 2 \D"
- §["‘LLAJ2A - \D sin(%]
where: D = R2 + 12 (15)
e = tan“1 % (16)
_ g 2 2 _ 4 _ 2.2 4
R—Aw2+w1w2 (2A 4)+w1 *LA w2 CI:7)
_ 2,.,4 2.2 .
I = Z‘PZ'A W, + N Wy (.2A-4) (18)
A=1+M (19)

Note that the principal value of © is to be used in Equation

(14). If the following substitutions are made,

E, = _‘*’1%931_ - \'?cos (%) (20)
E, = _wi_&é*w_‘f_ - \J_—%-Icos (£) (21)
R LR (%)] (22)
F, = 'E["L“’iA - \D sin (%)] (23)

then the expression for Az can be further simplified to:

Az
A =

E, + (F, (24)

(25)

|

b
+
Fxj



The poles of expression (11) are now given as follows:

Ay = ﬁ;[cos (9;-) + 1 sin (9-;-)] (26)

)\2 = -E[cos (%:) + i sin (%)] (27)

/\3 = \‘—E;[cos (2;:) + 1 sin (2;:)] (28)

A4 = =V Gylcos (‘i;) + 1 sin (9-;1] (29)

where: G, = \E2 + F) (30)
e* = tan”! F,/E, (31)

G, = \E2 + Fj (32)

o™ = tan™' F,/E, (33)

* *x
Again, only the principal values of © and © are used in

Equations (26) thru (29). Or, more simply:

Al =a+ib (34)
)\2 = -a - ib (35)
Az =1u+iv (36)
)\4 = -u - iv (37)

Returning to Equation (9) it is seen that the portionm
of the absolute value squared of the frequency response
function that has not been considered is the complex conjugate
of the portion that has just been considered. It can be shown

that the poles of the portion yet to be considered are of the

form: Ag=a-ib (38)
Ag=-a+ib (39)
A, =u-1iv (40)
/\8 = -u + 1iv (41)

9



I1f, for example, a, b, u, and v are all positive, one possible
location of the eight values of A is shown in Figure 3.

We are now ready to perform the integration shown in
Equation (8). The limits on this integral are minus infinity
and plus infinity. Replace the right hand side of Equation
(8) by a contour integration and let the contour be as shown

in Figure 3. Application of the residue theorem yields:

E[X*(t)] = 2T Ki(R, + Ry + R + Ry) (42)

where Ejis the residue at A = A j. These residues are

readily evaluated as follows:

4 4 2 2,2 4
5 Wy + Wy M7 -2wy A] + A} (43)
1 2 f
ml(,\l—Az)(Al-AS}(,\1-/\4).,.“\1—/\8}

4 4 2 242 4
B m(Agm A (Agm A (Agm Ao (Agm Ag)

Wy + ngz-Zm§A§+ )\é

L T A A -
my (Ag= AP (A= Ag) . (A g A (Ag=A ) (Ag=Ag)
wy+ Wy -2w3AZ + Ag
R8=-§ '\ (46)

my (Ag= AP (A= A (AG- AYd ... (Ag- Ay)
To further facilitate later computations, the following
substitutions are made:

a+u==c rs — pgq =t

a-u=4d ps + qr = W

b+vs=g dh - dg = x

dh + dg = p ge - ch = =z

2
cg + ¢ch = ¢q e =+ gh =mn
2
d - hg =r yn - xz =m

10



2

¢ - hg = s xn + yz = kK
8ab2t + Sazbw = e 8a2bt - 8ab2w =
Buzvk + 8uv2m = % 8u2vm - 8uv2k = E

Then R1 + R3 + R6 + R8 can be written as follows:

g, 5ol 2 2,2 44 &, ool B 2,2, 44
Wyt Wy - By Ay A, Wat Wy M- ZwiyAgtAg
-@ + (0 -% + (Y

(48)

4, , 4.2 2,2, \4 4 4.2 232 44
+ Wit W, - 2 L At Ag ) o+ Wy M - 2w, Agt Ag

6)4—10’ ‘ﬁ% + (0

The sum of these four terms is a fraction whose

denominator is:
. : 5 . 2 2 2 2
(-eﬂa-)(eno-)(—%,nb‘)(szs> = (p™+ @ )(q( +3% (49

The numerator is very lengthy. Since the denominator is a
real quantity, the numerator must be a purely imaginary
quantity, otherwise E[Xz(t)] computed from Equation (8) would
be complex. If multiplication of all the terms in the numer-
ator is carried out, it is seen that the real terms do cancel.

The numerator so obtained is given as follows:

NUMERATOR =-g'21—K -4abw§ @ﬁz & 42[319 e% 2
m
1
4ab3€%2 - 4abw§ 9'62 + 4a3beb'2 - 4ab3<3‘62

+ oogorezzz + wgvtzoqzz = zwg aqr%(z + zwgbzce?'z (50)

+ a40'€{2 - 6a2b20'§l2 + b40'% 2 & 0330'52 + wgalza"a’z

ngazo'b’ 2 % ng b20' Uz + a40'3’2 - 6a2b20'h'2

11



-+

b40'62 - 4uvw§i€2 + 4u3vie2 - 4uv3‘§92

4uv W5 ;,0‘2 + audv ?Ecrz = 4uv3%0'2 + W) B’f:z

+

wgrLz Fez = 2w§u2‘6(02 + ng vzh'(oz + u46€ €

6u2v26'€2 + v4U€2 * ao‘zl ¥a? +60§‘7_250'2
- 2603 u2 3'0'2 + 2602\:260'2 + u430'2 - 6uzv2 5a &

+ v4 3'0'2

Therefore: E[XZ2 (1) ] 2 TT: (NUMERATOR)

<QZ+0'2)(§2+ ¥2)

Computations involving Equation (51) were carried out on a

(51)

high speed computer.
The other case that is considered is shown in Figure 2.
It is similar to the system shown in Figure 1, but the
excitation is the random motion of the foundation. Since
the excitation is again a white noise, Equation (8) applies
to this case, except that the square of the absolute value
of the frequency response function is now given by:
(B[ ® = 22 [wf (+in) - N ]
[A WOE R (14 M) -OF R+ w’wz]ﬁm [uﬁ/\“az(nm)c- »wa'wz_J

X[ (1-n) - W ]
X 05 0 (1#M)-WPN s W |- [ K () oo |

(52)

This frequency response function refers to the difference
between the displacement of mass my and the displacement of
the foundation, that is, Xl - Y =2,

The presence of )\4 in the numerator of the integrand

does not affect the location of the poles of the integrand,

12



but it does affect the values of the residues. It can be
shown that the expression for E[Zz(t)] can be written as

follows: 8T K

m"f(92+0'2)<€(2+ ¥?)

B[22 (t)] = [-4abw§e‘% 2 4

4a3b e‘%z - 4ab3 e';zz - 4abu.)§ effz + 4a3b 6352 - 4abse]’2
4 2 202 2 2.2 2 2.2 2
+oo2cr€( + Wy crqz - Zwia cr‘E( + Rudgb cr‘z’(
" a4cr¢£z2 . 6a2b2cr“-5[2 ¥ b4cr§{2 + WiTE® 4 wgatzc-‘o’z
- 2w§a2crb’2 + ngbzﬂ'ﬁ % g a4CI"0' 2 . 6a2b20“62
+ b40'K2]'[a4 - 6azb2 +b4] + [-4uvw§ %ez - 4u3vie2
= 4uv3%ez - 4uvw§%0'2 + 4u3v %0'2 - 4uv3%0" 2
4 2 2 2 2 2.2 2 2.2 2
+ W, 6'(3 +OO2’*( Ue - szu U(o +Za.)2v Zf(‘_) +
u4U€2 - 6u2v2U92 + v 662 +wg 5q 2 +w§1250'2
(53)
-nguzb'zc'z + ngvz ¥~ & A YT? = sul? YT
+ \rqb'c:,l"z]-[u4 - 6u2v2 + v4] + [4u3v - 4uv3] .

2 .22

[%ezwg + Glezcog '7'2 - 2%@2w§u2 + 2%@ OV
+%€2u4 i ﬁqzezuzvz .\ %ezvti : %G‘ 260; B %G_ng,tz

- Z%G'zwguz + Z%O‘zwgvz + Q(Cl"zu4 -6 %G‘zuzvz
B %0,2‘!4 + 46€2uv6§)§ - 4ﬁ€2u3v + 46(3211173 4

4 Ucrzuvoog - 4§O‘2u3v + 4 60’211\:3] + [4a3b - 4ab3] .

[ e'i(zw‘z‘ + e%zwgf - zeﬁ(zwgaz +z(_>§§ b? +
13



2 4 2 2 2 2.4 4 + 2
e% = 6952( '2( 5* 4 etf w, @'6 1{_
Ze‘ﬁzwgaz § Z(D Kzo)zbz +EK gt = 6@ ‘ﬂzazbz +

E)Uzb" + 40’9(%03 ab - 40'%2a3b + 40-%2
+ 40 % %W ab-4¢‘62a3b+40"62 =

Computations involving Equation (53) were also carried out
on a high speed computer.

14



3. RESULTS
The results of this paper are presented in both tabular

and graphical forms. For all cases considered, m, and K are

1
set equal to unity.

Table 1 lists values of the mass ratio M of 0.02, 0.05,
0.1, and 0.2; typical values of the loss factor 1Z of 0.2,
0.5, and 1.0; and values of the natural frequency Q}l of the
primary system of 10, 20, 30, 40, and 50 radians per second.
For each combination of the above parameters, there are listed
two values of the natural frequency W 9 of the damper unit.
The first column of () 2 represents the optimum (*)2 for
minimum mean square response when the system is excited by a
white noise at my - The second column of 6432 represents the
optimum t¢)2 for minimum mean square response when the foun-
dation is moved in a random fashion.

Table 2 lists values of the mass ratio M of 0.05, 0.1,
and 0.2; values of the loss factor 7& of 0.2 and 0.5; and
values of the natural frequency w 1 of the primary system
of 10, 20, 30, 40, and 50 radians per second. The first
column of O 2 represents the optimum QO 2 for the equal

peak criterion when the excitation is applied at m The

1
second column of (W 2 represents the optimum ¢ 2 for the

equal peak criterion when the excitation is the motion of

the foundation. Data for the equal peak criterion was obtained
for only a limited number of combinations of the parameters.

For the combinations of parameters list=d in Table 1 that are

not listed in Table 2, the absolute value of the frequency

15



response function exhibited essentially only one peak. The
cases where all four sets of optimum qu were obtained are
plotted in Figures 4, 5, 6, and 7.

To further contrast the different results obtained by
use of two different tuning criteria, in Figures &.9 and 10
are plotted the square of the absolute value of the fre-
quency response function versus W for a mass ratio M = 0.05,
a loss factor‘1 = 0.2, and a natural frequency of the primary
system LO:I = 40 radians per second. Figure 8 represents the
case of ¢&)2 = 38.4 radians per second; which is the value of
w 2 that satisfies the equal peak criterion. Figure 9
represents the case of W o = 38.9 radians per second, which
is the value of W o that satisfies the minimum mean square
response criterion when the system is excited by a white
noise at m, . This value of W 5 causes the first peak to be
of greater amplitude than the second peak. Figure 10 repre-
sents the case of W 9 = 38.0 radians per second. This
value of W 2 is less than both the frequency values corre-
sponding to the two tuning criteria stated above, and it
causes the second peak to be of greater amplitude than the
first peak.

Table 3 lists values of loss factor 71 of 0.07, 0.10,
0.20, 0.50, and 1.0 in combination with a single mass ratio
M = 0.02 and a single natural frequency of the primary system
W. = 50 radians per second. For each 7Z value; nine values

j 4

of W are listed together with their respective values of

2

mean square response for the case of white noise excitation
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at m;. The units on E[Xz(t)] would depend on the units used

for the masses in the system. If my and m, are specified by
the units pound—second2 per inch, then E[Xz(t)] would be
expressed in terms of inchz. The data from Table 3 is plotted
in Figure 11.

Table 4 contains the same combinations of parameters as
Table 3, except that Table 4 refers to the case of random
motion of the foundation. The data of Table 4 is plotted in
Figure 12.

Table 5 lists values of the mass ratio M of 0.02, 0.05,
0.10, and 0.20 in combination with values of loss factor wz
of 0.04, 0.07, 0.10, 0.20, 0.50, and 1.00, and a single
w 1 10 radians per second. For each mass ratio and the
given LQ]) there exists an optimum loss factor giving rise
to a minimum value of mean square response for each case of
white noise excitation. The data for the case where white
noise excitatipn is applied at my is plotted in Figure 13,
and the data for the case where white noise excitation is
applied at the foundation is plotted in Figure 14.

Table 6 is identical to that of Table 5 except that the
natural frequency a)l of the primary system is 50 radians

per second. The data from Table 6 is plotted in Figures 15

and 16.
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4. CONCLUSIONS
Figures 5, 6, and 7 show that when the excitation is

applied at m the two criteria for optimization give rise to

1’
optimum values of O 2 that are not identical, but very close
to each other. When the excitation is the motion of the foun-
dation, the two criteria also give rise to optimum values of
abz that are very close to each other.

It is also seen that the plots of (O , versus optimum

1
032 are essentially linear. By comparing Figures 6 and 7,

it is found that for a given mass ratio, the slope of the
plots decreases as loss factor decreases. This implies that
the greater the loss factor the softer the damper unit must

be to satisfy either optimum criterion.

Figures 8, 9, and 10 show that the second peak is higher
than the first peak for a value of obzlthat is smaller than
the one giving rise to equal peaks. The reverse is true if
6&52 is larger than that which gives rise to equal peaks. If
w 9 is considerably smaller than or considerably larger than
the optimum &O 9 essentially only one peak will appear in
the absolute value of the frequency response function.

As mentioned previously in this section, Figures 4, 35,

6, and 7 show that the two criteria for optimization are not
exactly identical. Figures 11 and 12, however, show that the
plots representing mean square response versus C*JZ are quite
flat in the region of their respective minima. It can be seen

that for a given value of mass ratio and a given value of O 1

the greater the loss factor, the more slowly the mean square

18



response varies in the region of its minimum. For the case
of mass ratio M = 0.2, loss factor 1?' = 0.2, and u.)l = 50
radians per second, the equal peak condition is accompanied
by a mean square response which is only two per cent larger
than the minimum mean square response.

Figures1ll and 12 show that as the value of w2 deviates
from the optimum value of wz, the mean square response
increases. For the limiting cases, that is, ¢A>2 = 0 and
w 5 8 &0 , the mean square response is unbounded. The case
of W 2 = 0 corresponds to the case where the damper unit is
not attached to the primary system. Since the primary system
is of a single degree-of-freedom in which no damping is pres-
ent, the frequency response function becomes unbounded at
w = 001. For this case the area under the squared frequency
response function curve is also infinite. For the case of
4432 = 0@ , the damper spring is infinitely stiff so that the
viscoelastic link becomes & rigid 1link, and again the system
degenerates into a single degree-of-freedom system. The mass
of this system is made up of my plus m, joined together by
the rigid 1link. Similar to the case of Cx)z = 0, the squared
frequency response function becomes unbounded at some frequency
and results in an infinte area under the curve.

Referring to Figures 13, 14, 15, and 16 it can be seen
that for each combination of mass ratio and 601, there exists
a value of the loss factor that will give rise to a minimum
mean square response. For a given value of W 1’ the optimum

loss factor decreases as the mass ratio decreases. The

19



optimum loss factor for a given mass ratio does not appear
to be a function of W , as can be seen by comparing Figure
12 with Figure 14 and Figure 13 with Figure 15. Data for
the case of qu = 30 radians per second also verifies this.
However, the value of the minimum mean square response
corresponding to the optimum loss factor does appear to be
a function of Cx)l. This can be seen by again comparing
Figures 12 and 14 and Figures 13 and 15.

In short, it can be said that for a combination of loss

factor, mass ratio, and W such that the equal peak condi-

1’
tion can be satisfied, the optimum CAJZ corresponding to
equal peaks is almost equal to that which satisfies the mini-
mum mean square response criterion. However, it should be
noted that there are combinations of the above parameters
that allow the system to be optimized according to minimum

mean square response but do not allow the system to be

optimized according to the equal peak criterion.
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Optimum Values of mz for Minimum Mean Square Response
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TABLE 1 (continued)

Optimum Values of ta)z for Minimum Mean Square Response

M ﬂz w, cdb for white noise (Jb for white noise
at m1 at foundation
0.1 0.2 10 9.65 10.05
20 19.2 20.2
30 28.7 30.1
40 38.4 40.1
50 47.1 501
0.5 10 9.05 9.60
20 18.2 19. 2
30 27.4 28.8
40 36.2 38.4
50 45.6 48.0
1.0 10 8.12 8.52
20 16'.3 16.9
30 24.2 257
40 32.4 33.9
30 41.0 42 .7
0.2 0.2 10 9.28 10. 2
20 18.6 20.5
30 27.9 30.8
40 371 41.2
50 46.5 51.2
0.3 10 8.90 9.70
20 iy AL 19.6
30 26.6 29.5
40 35.4 39.3
50 43.7 49.0
1.0 10 8.00 8.66
20 15.8 17.3
30 23.9 25.8
40 31.1 34.2
8 4

50 38. 43.
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TABLE 2

Optimum Values of &5, for Equal Peak Criterion

”

0.2

0.2

w

10
20

40
50
10
20
30
40
50
10
20
30
40
50
10
20
30
40
50

2
1 cib for sinusoidal coz for sinusoidal
input at my input at
foundation
9.60 9.90
19.2 19.8
28.7 29.6
38.4 39.5
48.0 49.4
9.40 10.0
18.8 19.9
28.1 29.7
37.6 39.6
46.9 49.5
9.10 9.90
17:9 19.9
26.7 29.8
35.9 39.7
44.9 49.6
8.50 9.50
16.9 18.7
25.4 27.9
33.9 37.3
42.8 46.9
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TABLE 3

Mean Square Response for the Case of White Noise
Excitation at my

w

0.02
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1.00

w

50
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40.
42,
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52.
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37.
40.
42.
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46 .
49,
51.
52.
54.
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E(X2(t)] x 10

4.97
3.
3.00

92

1:01
0.68
0.46
0.51
0.71
1.47
3.88
2.85
1.99
0.84
0.53
0.38
0.42
0.60
0.97
1.58
1.43
0.98
0.61
0.43
0.
0
0
0
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
: |

37

.41
.51
.67
.06
.93
.76
.87
.65
6T
.72
.81
.93
LD
«11
.07
.08
e ¢
.16
.23
.30
, 38
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TABLE 4

Mean Square Response for the Case of White Noise
Excitation at the Foundation

vl w, w, E[z2(¢)] x 104
0.02 0.07 50 37.4
40.0
42.45 2.03
44,75 0.71
46.9 0.48
49.0 0.30
51.0 0.298
52.9 0.394
54.8 0.797
0.10 50 37.4
40.0
42 .45 1. 34
44.75 0.58
46.9 0.365
49.0 0.246
51.0 0.245
52.9 0.334
54.8 0.533
0.20 50 37.4 1.03
40.0 0.95
42 .45 0.65
44 .75 0.40
46.9 0.28
49.0 0.23
51.0 0.24
52.9 0.29
54.8 0.38
0.50 50 37.4 0.76
40.0 0.59
4245 0.48
44 .75 0.42
46 .9 0.40
49.0 0.41
51.0 0.43
52.9 0.48
54.8 0.55
1.00 50 37.4 0.76
40.0 0.68
42 .45 0.654
44 .75 0.652
46.9 0.67
49.0 0.70
2l.0 0.3
52.9 0.78
54.8 0.82
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Minimum Mean Square Response for Both Cases of White Noise
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TABLE 5

Excitatio

E[X2(t)] x 10
excitation at my
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n

000000000000 OOHOOOOO

. 916
. 96

.47

,473
.816
.35

.816
.901
. 385
. 283
. 369
. 568
.785
.467
.343
.220
. 219
.309
. 186
. 144
.178

1

E[Zz(t)] x 10~
excitation at
foundation
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. 921
.58

.488
.485
818
.34

.822
.514
. 396
.298
.372

562

. 856
.499

369
236

223
.301
. 207
.148
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TABLE 6

Minimum Mean Square Response for Both Cases of White Noise

Excitation
< w,  E[X*(1)] x 10° E[zZ(t)] x 107?
excitation at my excitation at
foundation
0.02 0.04 50 0.63 0.39
0.07 0.44 0:27
0.10 0.38 0.23
0.20 0.37 0.23
0.50 0.65 0,40
1.00 1.07 0.65
0.05 0.04 50 0.61 0.41
0.07 0.38 0.24
0.10 0.29 0.186
0.20 0.22 0.137
0.50 0.29 0.175
1.00 0.45 0.269
.10 0.04 50 0.60 0.39
0.07 0.37 0.23
0.10 0.27 0.172
0.20 0.172 0.105
0.50 0.174 0.09
1.00 0.244 0.138
.20 0.20 50 0.146 0.087
0.50 0.112 0.06
1.00 0.14 0.072
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M = 0.05
2‘ = 0,2
- random excitation at m
© - random excitation at f%undation
0 - sinusoidal excitation at m
® - sinusoidal excitation at foundation
W. = natural frequency of primary system
& = natural frequency of damper unit
2
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Uoz(rad/sec)

Figure 4.

Plot of W; versus optimum 602
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Figure 5. Plot of ¢, versus optimum 402
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M = 0.1
:& = 10,2
- random excitation at m
© - random excitation at f&undation
0 - sinusoidal excitation at m
® - sinusoidal excitation at f%undation
031 = natural frequency of primary system
coz = natural frequency of damper unit
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M = 0,2
‘Z_ = 0.5
- random excitation at m
Q - random excitation at foundation
0O - sinusoidal excitation at m
[ J - sinusoidal excitation at foundation
oJl = natural frequency of primary system
032 = natural frequency of damper unit
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Figure 7. Plot of ), versus optimum 032

35



1
(we uorjlelroxa) (N sSnsasa . _mndvm_ JO 1014 -8 @an31g

(99s/PeI)
09 0¢ 0¥ 0€¢ 0oe 01 0

-

T T

E =

uo
1enba aogx

Mwﬁvcou Head
(7 wnutjdo
089S /pea §'gg
J9s/pea OF
¢'o0

¢o0'0

I
= R-’QHQNQN
&

36



AHE 1€ U0TIv3IToXa) (V) SNSI9A 5 _Aoaum_ Jo 101d ‘6 °2an31jg

(o8s/pel) m

09 0S (14 o€ 0g 0T 0
> e : s + v 0
+9°0
T80
+0°1
[
ﬁ T¢'1
=S vu.ﬂ
Jv +9°1
- w.._”
UOT}E]}TIOXd 9STOU 3}TYM
Iapun asuodsax gaenbs upau +
wnuiuiw X0y " wnutjdo = Mna 1oz
J9s/pex 6°8E = H3
o9s/peI OF = O
z2'0= k 1t 2'c
G600 = N E

0T X ) (e H)

37



(lw 1% uorjejtoxe) (7 snsaea . [(m)H| Fo 301d 01 @andig
(08s/ped) (v
09 0¢ 0] 4 0og 02 01

089S /pex ('8¢
o9s/pex (Of
¢'0

S0°0

=x373

¢'¢

0T X , |(O7)H]

38



random excitation at my
M = 0.02
1.4 % 601 = 50 rad/sec
v° -7Mm=0.07
@ -7=0.10
A -7M= 0.20
g == 0.50
0O -'7 = 1.00
1.2 +
1.0 T
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e
=y
+
S
Y% 0.6 +
=
0.4 1
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0 + t + + + + + + + +
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UJz(rad/sec)

Figure 11. Plot of mean square response E[Xz(t)]
versus natural frequency of the damper
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random excitation at foundation
= 0.02
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Figure 12. Plot of meag square response E[Z°(t)]
versus natural frequency of damper

40



P.uOuumu SSOT SnSJIsA
Hﬁyvmxum assuodsax ajenbs ueew wnuiutw JO 3}0Td

0°1 8°0 90 L %0

‘g1 @an3dtyg
z'0 0

b

e

020
01°'0
€00
¢0'0 =
oas/pex 01 ='m
Tu 3e uorjeiroxe wopueu

I

= ===
I

qo0D

1°0

m
o

¢ 0

b~
=

0T % [(3),X]q unmpuym

L1



L J031D®3} SSO] SnsIaa
[(3),z]a esuodssx saenbs uesw wnurutw o 301d “pI 9an31g

0'1 80 9°0 % p-p - .

L & - . )
v & ' ‘

UOT}EBPUNOJ 1€ UOT}BITOXD WOPURI

- /P/u

02°'0 =K -4
OT'0 =N - O )
€0'0 =K -0
20°0 =K - V
do8s/pex 01 =/m Jd

1°0

0 ™
2 -
© =)

g-0T X [(l)zz]a wnuIUTW

b~
o

42



T

NP JI010BY SSC] SNSI\8A
ﬁﬁpgwxﬁm asuodsea oJIenbs ueew wnwIuIw JO 30Td ST @INIIg

0°T 8°0 9°0 Mﬁ v°0 2’0 0

i ' 4 i

W }® UOT}BITOXD WOPUBI

gl e e S

Il
====

02’0
01°0
Ggo0'0
¢0°0
o9s/pex (G

™~ 0
o o
OT ¥ [(1)zx]3 WNUWIUTW

43




gﬁ JI0}DEJ SSO] SNSJI2A
_ﬁwvmmum 9suodsax saenbs uesw wnuwrutw Jo 1014 ‘91 @Ind1g

0T 8°0 9°0 .ﬁ Vo 20 0

UoOTI}BPUNOY }® UOT}EBI}TOXO WOPUBRI 1

i s

02°'0 =N - A
OT'0 =KW - O
G0'0 =W - ©O i
¢0°0 = N - Hﬂ
J29s/peX 0S = ‘m

o
=}

m
o

-
o

unuTutTw
50T X [(1)zz]3 Turt



UNCLASSIFIED

Security Classification

DOCUMENT CONTROL DATA - R&D

(Security clasaification of title, body of abstract and indexing annotation muaf be entered when the overall report is classilied)

1. ORIGINATING ACTIVITY (Corporate author)
University of Illinois
Urbana, Illinois

2a. REPORT SECURITY C LASSIFICATION

UNCLASSIFIED

2b GROUP

3. REPORT TITLE

OPTIMUM TUNED DAMPERS FOR RANDOMLY

EXCITED DYNAMIC SYSTEMS

4. DESCRIPTIVE NOTES (Type of report and inclusive dates)

Summary Report = 1 November 1966 to 30 April 1967

5. AUTHOR(S) (Laat name. first name, initial)

Syring, Roger P.

6. REPORT DATE

7a. TOTAL NO. OF PAGES 7b. NO. OF REFS
1

54

B8a. CONTRACT OR GRANT NO. FBJOL:,—D!-LLJ.SU

b. PROJECT NO. T735]

9a. ORIGINATOR'S REPORT NUMBER(S)

AFML-TR=67-

c. TASK NO. 735106

d.

9b. OTHER :’Pon'r NO(S) (Any other numbers that may be assigned
thia repo

10. AVAILABILITY/LIMITATION NOTICES This report
and each transmittal to foreign governments or foreign nationals may be made
only with prior approval of the Metals and Ceramics Division (MAM), Air
|[Force Materials Laboratory, Wright-Patterson AFB, Ohio 45433,

1s subject to special export controls

11. SUPPLEMENTARY NOTES

12. SPONSORING MILITARY ACTIVITY

Air Force Materials Laboratory
Wright-Patterson AFB, Ohio 45433

13. ABSTRACT

noise excitation. The tuned damper

under consideration, The ecriterion

This abstract is subject to special

approval of the Metals and Ceramics

The objective of this report is to present the effect of a tuned
damper on a single degree-of-freedom system which is subjected to white

itself consists of a mass connected

to a viscoelastic link which, in turn, is connected to the primary system

used for tuning the damper is the

minimization of the mean square response of the primary system., The
tuned damper obtained by use of this criterion is compared to that
obtained from another criterion requiring the peaks of the absolute value
of the frequency response function to be of equal height.

export controls and each transmittal

to foreign governments or foreign nationals may be made only with prior

Division (MAM), Air Force Materials

Laboratory, Wright-Patterson Air Force Base, Ohio 45433,

DD .%%%. 1473

UNCLASSIFIED

Security Classification



Security Classification

KEY WORDS

LINK A LINK B LINK C

ROLE WwT ROLE wWT ROLE

INSTRUCTIONS

1. ORIGINATING ACTIVITY: Enter the name and address
of the contractor, subcontractor, grantee, Department of De-
fense activity or other organization (corporate author) issuing
the report.

2a, REPORT SECURITY CLASSIFICATION: Enter the over-
all security classification of the report. Indicate whether
‘““Restricted Data’ is included. Marking is to be in accord-
ance with appropriate security regulations.

2b. GROUP: Automatic downgrading is specified in DoD Di-
rective 5200. 10 and Armed Forces Industrial Manual. Enter
the group number. Also, when applicable, show that optional
markings have been used for Group 3 and Group 4 ‘as author-
ized.

3. REPORT TITLE: Enter the complete report title in all

capital letters. Titles in all cases should be unclassified.
If a meaningful title cannot be selected without classifica-

tion, show title classification in all capitals in parenthesis
immediately following the title.

4, DESCRIPTIVE NOTES: If appropriate, enter the type of
report, e.g., interim, progress, summary, annual, or final.
Give the inclusive dates when a specific reporting period is
covered.

5. AUTHOR(S): Enter the name(s) of author(s) as shown on
or in the report. Enter last name, first name, middle initial.
If military, show rank and branch of service. The name of
the principal author is an absolute minimum requirement.

6. REPORT DATZ: Enter the date of the report as day,
month, year; or month, year, If more than one date appears
on the report, use date of publication.

7a. TOTAL NUMBER OF PAGES: The total page count
should follow normal pagination procedures, i.e., enter the
number of pages containing information

7b. NUMBER OF REFERENCES: Enter the total number of
references cited in the report.

8a. CONTRACT OR GRANT NUMBER: If appropriate, enter
the applicable nimber of the contract or grant under which
the report was written.

8b, &, & 8d. PROJECT NUMBER: Enter the appropriate
military department identification, such as project number,
subproject number, system numbers, task number, etc.

9a. ORIGINATOR’S REPORT NUMBER(S): Enter the offi-
cial report number by which the document will be identified
and controlled by the originating activity. This number must
be unique to this report.

9. OTHER REPORT NUMBER(S): If the report has been
assigned any other report numbers (either by the originator
or by the sponsor), also enter this number(s).

10. AVAILABILITY/LIMITATION NOTICES: Enter any lim-
itations on further dissemination of the report, other than those

imposed by security classification, using standard statements
such as:

(n

“*Qualified requesters may obtain copies of this
report from DDC."’"

“Foreign announcement and dissemination of this
report by DDC is not authorized.’"

“'U. 5. Government agencies may obtain copies of
this report directly from DDC. Other qualified DDC
users shall request through

(2)

(3)

(4) ‘*U. S.. military agencies may obtain copies of this
report directly from DDC. Other qualified users
shall request through

““All distribution of this report is controlled Qual-
ified DDC users shall request through

(5)

"
.

If the report has been furnished to the Office of Technical
Services, Department of Commerce, for sale to the public, indi-
cate this fact and enter the price, if known

11, SUPPLEMENTARY NOTES: Use for additional explana-
tory notes.

12, SPONSORING MILITARY ACTIVITY: Enter the name of
the departmental project office or laboratory sponsoring (pay-
ing for) the research and development. Include address.

13. ABSTRACT: Enter an abstract giving a brief and factual
summary of the document indicative of the report, even though

it may also appear elsewhere in the body of the technical re-
port. If additional space is required, a continuation sheet shall’
be attached.

It is highly desirable that the abstract of classified reports
be unclassified. Each paragraph of the abstract shall end with
an indication of the military security classification of the in-
formation in the paragraph, represented as (TS), (§). (C), or (U)

There is no limitation on the length of the abstract. How-

ever, the suggested length is from 150 to 225 words.

14. KEY WORDS: Key words are technically meaningful terms
or short phrases that characterize a report and may be used as
index entries for cataloging the report. Key words must be
selected so that no security classification is required. Identi-
fiers, such as equipment model designation, trade name, military
project code name, geographic location, may be used as key
words but will be followed by an indication of technical con-
text. The assignment of links, rules, and weights is optional.

Security Classification



